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In a few words

Interactive theorem proving to model optical systems

More precisely: prove the stability of optical resonators
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Concrete example

Optical system:
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Concrete example

Optical resonators:
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Why optics?

Optics is used more and more in various technologies

Very present in critical applications
(aerospace, military, health, etc.)

Complex to verify

+ it’s new and cool to formalize physics
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Geometrical optics

Main characteristics:

Light is a ray

“Paraxial” approximation = objects bigger than wavelength
⇒ no diffraction

Fermat principle = use the shortest path

Additional assumption:

Small angles w.r.t. axis (concretely: sin(θ) ≈ θ)
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Related work

Existing numerical software
(e.g., reZonator, LASCAD, CODE V)

Existing computer algebra software
(e.g., Optica)

But no existing use of formal methods
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Formalization outline

All the following has to be formalized:

Optical systems

Light and its interaction with systems

Matrix representation of light behavior

Stability analysis
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Formalization of optical systems (1/2)

!"#$%&'()*+,"' -"+.'
/0""'.1*("'

-$,)2'0*3'

Vincent Aravantinos Formal Stability Analysis of Optical Resonators



12/28

Topic & motivation
Formalization of geometrical optics

Stability of optical resonators
Conclusion & future work

Formalization of optical systems (2/2)
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Type definitions:

Free space: refractive index + distance

→ type free space
def
= R× R

Interface between mediums: planar OR spherical

→ type interface
def
= plane | spherical(R)

Observed ray behaviour: reflected OR transmitted

→ type behaviour
def
= reflected | transmitted

Optical system: list of free space + interface + behaviour

→ type optical system
def
=

(free space× interface× behaviour) list
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Formalization of light as a ray (1/3)

!"#$%&'()*+,"'

-$,).'/*0'

'1'0

Vincent Aravantinos Formal Stability Analysis of Optical Resonators



14/28

Topic & motivation
Formalization of geometrical optics

Stability of optical resonators
Conclusion & future work

Formalization of light as a ray (2/3)
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Type definitions:

Ray at a given point: distance from axis + angle

→ type ray at point
def
= R× R

Ray course through a whole system:
a ray description for every point of the system

→ type ray
def
= (ray at point× ray at point) list
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Formalization of light as a ray (2/3)
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Formalization of light as a ray (3/3)

Ray in a free space
is valid ray at free space

(y0, θ0) : ray at point
(y1, θ1) : ray at point
(n, d) : free space

def⇔ y1 = y0 + d ∗ θ0 ∧ θ1 = θ0

!"#$%"&$'($)*++$,-".+$ !/#$01"(+$2(3+*4".+$!3*"(56'33+7#$ !.#$01"(+$2(3+*4".+$!*+41+.3+7#$ !7#$$,-8+*'."1$2(3+*4".+$!*+41+.3+7#$$Ray transmitted at a plane interface (Snell’s law)
is valid ray at interface (y0, θ0) (y1, θ1) n0 n1 plane transmitted

def⇔ y1 = y0 ∧ n1 ∗ θ1 = n0 ∗ θ0
Similar for reflected (law of reflection)

Similar for spherical interfaces

(a) Ray in Free Space  (b) Plane Interface (transmitted)  (c) Plane Interface (reflected)  (d)  Spherical Interface (reflected)  → complex expression, but easy (and boring) underlying reasoning
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Formalization of the transfer matrices

Small angle approximation
→ the mapping y0 7→ y1, θ0 7→ θ1 is linear

2× 2 matrix for each component

→ example:

R n0 n1

r1

r0 r1 = r0

φ0 φ1

θ0 θ1

n0 sin(φ0) = n1 sin(φ1)

n0φ0 = n1φ1

sin(φ) ! φ φ θ0 = φ0 − ψ θ1 = φ1 − ψ ψ
sin(ψ) = r0

R
ψ = r0

R

θ1 =
(

n0 − n1

n1R

)
r0 +

(
n0

n1

)
θ0

[
r1

θ1

]
=

[
1 0

n0−n1
n1R

n0
n1

] [
r0

θ0

]

×

[
y1

θ1

]
=

[
1 0

n0−n1
n1R

n0
n1

] [
y0

θ0

]

Matrix multiplication ⇒ matrix for whole system
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Stability of optical resonators
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Formal expression of stability

A resonator is stable if the ray trajectory is bounded after any
number of round-trips

Amounts to say that the vector (ray , angle) is bounded even
after raising the matrix of the system to any power:

Definition

` ∀ M. stable optical system M ⇔
∀y , θ. ∃B. ∀n. abs

(
Mn ∗

[
y
θ

])
≤ B

(abs,≤ = component-wise)
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Sylvester’s Theorem

Key theorem providing a sufficient condition for stability:

Theorem (Sylvester’s Theorem)

`∀ N A B C D.

˛̨̨̨
˛̨ A B

C D

˛̨̨̨
˛̨=1∧−1< A+D

2
∧ A+D

2
<1 =⇒

let θ = acs( A+D
2

) in264A B

C D

375
N

= 1
sin(θ)

264A∗sin(Nθ)−sin((N−1)θ) B∗sin(Nθ)

C∗sin(Nθ) D∗sin(Nθ)−sin((N−1)θ)

375
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Generalized stability theorem

Sylvester’s theorem allows to derive a simple criterion to decide the
stability of resonator:

Theorem (Generalized Stability Theorem)

` ∀ A B C D.

∣∣∣∣
A B
C D

∣∣∣∣ = 1 ∧ −1 < A+D
2
∧ A+D

2
< 1 =⇒

stable optical system

[
A B
C D

]
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Application: Fabry Perot resonator
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Cylindrical Mirror 

dx dx df 
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Fabry Perot resonator: formalization in XZ plane

Formal Model of FP Resonator in XZ Plane:

Definition

` ∀ R dx nf df. FP XZ R dx df nf =
([(1,0),spherical R,reflected;
(1,dx),plane,transmitted;
(nf,df),plane,transmitted],1,dx)

R
dfree space

!"

#"
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%&'()"*+,"-(./"

012&.,)&342"5&))+)"

,6" ,6",7"
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#"

,1" ,1",7"

#"

$"

8'9"

849" 839"

Vincent Aravantinos Formal Stability Analysis of Optical Resonators



24/28

Topic & motivation
Formalization of geometrical optics

Stability of optical resonators
Conclusion & future work

Fabry Perot resonator: stability

Ray-transfer matrix for one round-trip in the resonator:

Theorem

` ∀ R dx df nf. R 6= 0 ∧ 0 < dx ∧ 0 < df ∧ 0 < nf
=⇒ system composition (FP XZ R dx df nf) =[

1− 2 ∗ (df + 2 ∗ dx ∗ nf)
nf ∗ R

2 ∗ dx + df
nf

−2
R

1

]

Sufficient conditions for stability:

Theorem (Stability in XZ plane)

` ∀ R dx df nf. R 6= 0 ∧ 0 < dx ∧ 0 < df ∧ 0 < nf

0 <
2∗dx+ df

nf

R
∧ 2∗dx+ df

nf

R
< 2 =⇒ stable optical system

(system composition (FP XZ R dx df nf))
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Conclusion

Formalization of:

Optical systems

Behavior of light in geometric optics

Ray-transfer matrix in paraxial approximation

Stability analysis

Application to a recently developped resonator
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Future work

Formal treatment of small angle approximation

Derivation of Snell’s law and law of reflection from Fermat’s
principle

Handle more complex models (e.g., misaligned components)
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http://hvg.ece.concordia.ca

Thanks!
Questions?

PS: Just in case, looking for a job in Germany, preferably close to Stuttgart. . . ;-)
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